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• Clustering: Grouping of objects characterized by feature

vectors (or attribute vectors) into classes

• Objects in the same class are similar according to some defined

similarity measure

• Pairs of objects from different classes are dissimilar under the

same measure

• Questions:

• How do we find these similar classes - Techniques?

• Having found them how do we present them - Cluster

Visualization ?

• How do we validate the techniques - Quality Measure ?
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Some Issues - Taxonomy

• Dimensionality: low (≤ 10) vs. high dimensions (> 10)

• Size: low ( 106) vs. large (107 109)

• Stability: Streaming vs. storable

• Method of Processing: serial vs. parallel computation
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Some Known Algorithms

• Extensive list of clustering algorithms have been proposed

according to the domain of application

– See survey article by Jain and Murty, 1999

– Data Mining Book by Han and Kamber, 2001.

– Research Group of D. Keim - http://infovis.uni-

konstanz.de/index.php?region=publications

• Some Classification of Clustering techniques :

– partitioning,

– hierarchical agglomerative; hierarchical divisive

– Density (or Grid) based clustering

• We will refer to density/grid based methods also as Cell-Based.
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Hierarchical Clustering in M-dimensional space

• Classical hierarchical agglomerative clustering uses defined

distance measures and similarity measures to construct a

dendogram. - single-link, complete-link, average-link

• The Euclidean distance between a pair of objects,

rp = 〈ap,0, ap,1 . . . ap,M−1〉 and rq = 〈aq,0, aq,1 . . . aq,M−1〉 is

δ2(rq, rp) = 2

√

√

√

√

M−1
∑

j=0

(ap,j − aq,j)2 (1)

• Similarity value is defined by

ςp,q = 1 −
δq(rq, rp)

δmax

(2)

where δmax is the distance between the two farthest pair.
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Example of Hierarchical Clustering

Object A0 A1 A2

P 0.31 17.8 3.0

Q 0.10 9.30 3.0

R 0.11 21.5 1.0

S 0.58 22.0 2.0

T 0.50 16.0 1.0

Object P Q R S T

P 1.0

Q 0.79 1.0

R 0.58 0.36 1.0

S 0.69 0.17 0.15 1.0

T 0.61 0.34 0.72 0.75 1.0

Sample Dataset Similarity Matrix

P Q R S T
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Single-Link Dendogram
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Other Known Algorithms

BIRCH: Derives clusters; handles noise; requires knowledge of

inter-cluster distance for merging; works for small N.

CURE: Derives clusters in specified dimensions K; high running time;

Used only on small data sets with K = 2; works by sampling.

OPTICS: For cluster analysis only; does not generate clusters; creates

order of potential clusters. Nice for predicting the number of

potential clusters for use in say k-Means clustering

CELTYC/TDC: Derives clusters of any shapes; depends on bin

resolution.

CLIQUE: Generates clusters in the form of DNF expressions; requires

input of limiting dimension K; rectilinear clusters only.

Others: MAFIA(PMAFIA), GridGlus, STING, WaveCluster.
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Grid/Density Based Clustering

• More appropriate for massively large datasets

• Takes a Spatial view of data representation

• Given a set of bounded ordered domains A0, A1, . . . , AM−1, let

SM = A0 × A1 × . . . × AM−1 be a feature space.

• Let R = {r0, r1, . . . , rN−1} be a set of objects where

ri = 〈ai,0, ai,1 . . . ai,M−1〉, and ai,j ∈ Aj .

• Each object corresponds to a point (i.e., an ”image point” of the object),

in the multidimensional feature space SM .

Y

X
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One Approach - HyCeltyc

1. Take sample of size S from original large dataset;

• Either uniform sampling or biased sampling.

2. Apply dimensional reduction technique that preserves clusters from

M → K;

• Techniques are: PCA, MDS, FastMap.

• Points are mapped to a new feature space.

3. Cluster points in the transformed space using fast clustering algorithm

much like connected component labeling.

4. Refine the clusters in the original M-dimensional space.

5. Using derived clusters, select the K most discriminating dimensions of

these clusters.

6. Apply a linear clustering algorithm to the rest of the data points based on

these K-significant dimensions.
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Methods of Visualizing Cluster

• Highly problematic when we have to deal with high dimensions

• Topic discussed in detail in

– Patrick Hoffman and George Grinstein, A survey of

visualizations for high-dimensional data mining

– D. Keim, Vis Tutorial Notes at http://infovis.uni-

konstanz.de/members/keim/PDF/Vis04Tutorial.pdf

• Methods include

– Scatter Plot Matrix

– Dimensional Staking

– Dendograms

– Parallel Coordinates

– Circular parallel Coordinates

• Some Viz Tools: Xgobi, GGobi and IBM’s CViz
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Scatter Plot Matrix
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Dendograms
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Parallel Coordinates
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Circular Parallel Coordinates
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Some relevant references are given below:

Clustering: [2, 4, 6, 7, 8, 11, 12, 3, 1, 13, 15, 16, 17]

Visualization of Clusters: [10, 9, 5, 14]

Course Notes and Sites:

http://infovis.uni-konstanz.de/members/keim/PDF/Vis04Tutorial.pdf

http://infovis.uni-konstanz.de/publications/papers/InfoVisLausanne.pdf

http://home.comcast.net/ patrick.hoffman/viz/MIV-datamining.pdf

http://www.cs.uml.edu/ mtrutsch/research/High-Dimensional Visualizations-KDD2001-

color.pdf http://www.ggobi.org/ http://www.research.att.com/areas/stat/xgobi/

http://www.alphaworks.ibm.com/tech/cviz
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